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Abstract

We present a new method for variable tomographic scanning based on the wavelength scanning digital interference holography
(WSDIH). A series of holograms are generated with a range of scanned wavelengths. The object field is reconstructed in a number of
selected tilted planes from each hologram, and the numerical superposition of all the tilted object fields results in a variable tomographic
scanning. The scanning direction can be arbitrary angles in 3D space but not limited in a 2D plane, thus the proposed algorithm offers
more flexibility for acquiring and observing randomly orientated features of a specimen in a WSDIH system. Experiments are performed
to demonstrate the effectiveness of the method.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In contrast to conventional microscopy where the image
of in-focus plane is superposed with blurred image of out-
of-focus planes, three-dimensional microscopy that reveals
the tomographic structure of the sample has found many
applications in biological and materials science. Optical
coherence tomography [1] (OCT) is a scanning microscopic
technique that is suitable for high-resolution cross-
sectional imaging. The basis of OCT is to detect the light
scattered from an object that is illuminated by a light source
of low temporal but high spatial coherence, and the three-
dimensional image is reconstructed by scanning the sample
area or volume pixel by pixel. Its axial resolution is deter-
mined by the source coherence length and its lateral resolu-
tion is determined by the numerical aperture of the
sampling lens. Full-field two-dimensional OCT [2–6] has
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also been reported as a technique to acquire two-dimen-
sional tomographic images while maintaining the optical
sectioning characteristics of OCT. With the illumination
of a broadband light source, the regions of the image that
do contain interferometric information can be extracted by
digital processing of the CCD images, thus generating two-
dimensional optical section images. Wavelength scanning
digital interference holography (WSDIH) [7,8] is another
3D microscopy and tomographic imaging technique that
we have been developing. By recording a series of holo-
grams using a range of scanned wavelengths, and superpos-
ing image volumes from each of the holograms together, a
synthesized short coherence length and corresponding axial
resolution can be obtained.

The tomographic images reported in the above 3D
microscopy systems however are all obtained with a fixed
scanning direction parallel to the optical axis of the system.
If the interesting feature is located on a plane not parallel to
the scanning plane, it needs to be reconstructed by combin-
ing or interpolating points from different tomographic lay-
ers. However, if the lateral resolution does not match well
with the axial resolution, the quality of the interpolated
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image will be greatly degraded. As in the above WSDIH
system [7,8], the axial resolution is determined by the wave-
length scanning range of the dye laser system and normally
is on the order of �10 lm. However, the lateral resolution
can be much higher if microscopic objectives with high mag-
nification are used in the optical system.

One approach to solve this problem is to physically
repeat the whole process either with the reference mirror
tilted or the object rotated to a desired orientation. How-
ever, this is time-consuming and cumbersome. We have pro-
posed another novel approach called variable tomographic
scanning [9] based on WSDIH. Since the advantage of dig-
ital holography is that a single hologram records the entire
three-dimensional information of the object, it is possible to
calculate more rigorous wavefield distributions directly on
the titled planes from the recorded holograms, thus the syn-
thesized tilted tomographic images will have better quality
than those only from interpolation. By this way, flexible
selection and accurate reconstruction of scanning planes
are possible, and the whole process can be fulfilled without
physically tilting the object and recording the holograms
again. However, only scanning directions within a 2D plane
was reported, and the selection of the reconstruction planes
limited in space, thus it will pose a restriction to the appli-
cation of variable tomographic scanning. In this paper,
we overcome the above-mentioned limitations and propose
an algorithm to reconstruct wavefields on planes that are
arbitrarily tilted in 3D space. Thus it offers more flexibility
for acquiring and observing images of randomly orientated
features of a specimen in a WSDIH system. Below in Sec-
tion 2, we briefly review the principle of WSDIH and
describe the detailed principles of variable tomographic
scanning in 3D space. Some experimental results are pre-
sented in Section 3 to verify the proposed idea, and a con-
clusion is given in Section 4.
2. Principle

2.1. Wavelength scanning digital interference holography

The principle of wavelength scanning digital interference
holography has been reported in [7,8]. Here we give a brief
review of the principle. If a laser beam of wavelength k is
used to illuminate a volume object. Any point P on the
object at rP scatters the incident beam into a Huygens
wavelet A(rP), so that the resultant field E(r) at r is

EðrÞ �
Z

AðrP Þ expðikjr� rP jÞd3rP ; ð1Þ

where the integral is over the whole object volume. A dig-
ital camera is used to record a hologram. It contains both
the amplitude and phase information of the object, and can
be used to reconstruct its wave propagation at different
positions. If the holographic process is repeated using N

different wavelengths, and the reconstructed fields are all
superposed together, then the resultant field is
EðrÞ �
X

k

Z
AðrP Þ expðikjr� rP jÞd3rP

�
Z

AðrP Þdðr� rP Þd3rP � AðrÞ; ð2Þ

which is proportional to the field at the object and is non-
zero only at the object points. In practice, if one uses a fi-
nite number N of wavelengths at regular intervals of D(1/
k), then other than the diffraction or defocusing effect of
propagation, the object image A(r) repeats itself at a beat
wavelength K = [D(1/k)]�1, with axial resolution d = K/N.
By use of appropriate values of D(1/k) and N, the beat
wavelength K can be matched to the axial extent of the ob-
ject, and d to the desired level of axial resolution.

2.2. Variable tomographic scanning in 3D space

In this section, we discuss how to fulfill variable
tomographic scanning with scanning directions randomly
oriented in 3D space. Rayleigh–Sommerfeld diffraction
formula [10] has been used for numerical reconstruction
from tilted holograms, but on fixed reconstruction planes
[11,12]. We will use it to reconstruct wave distributions in
variable tilted planes. Suppose we have extracted the object
wave distribution o(x,y) from a hologram, the wave distribu-
tion in a variably selected tilted plane can be calculated by the
Rayleigh–Sommerfeld diffraction integral as

Eðxo; yo; zoÞ ¼
iE0

k

Z Z
oðx; yÞ exp½ikrðx; y; xo; yoÞ�

rðx; y; xo; yoÞ
� vðx; y; xo; yoÞdxdy; ð3Þ

where k is the wave number given by k = 2p/k, E0 is a con-
stant and v(x,y,xo,yo) is the inclination factor, which is
approximately unitary under the Fresnel approximation
and is omitted from the following equations. The inverse
length 1/r can be replaced by 1/ro.

As shown in Fig. 1, the hologram (x–y plane) is verti-
cally placed in the z = 0 plane. The reconstruction plane
xo–yo is tilted with its normal direction randomly oriented
in space and its origin located at z = zP. The frame xo–yo–
zo is defined as Frame {A} in the figure. Now we introduce
a new plane x 0–y 0, parallel to the hologram plane but share
the same origin as the xo–yo plane, which defines Frame
{B}. Any point [xo,yo,zo] on the xo–yo plane can be trans-
ferred to the new Frame {B} as

½x0; y0; z0�T ¼ B
AR � ½xo; yo; zo�T; ð4Þ

where the superscript T represents the vector transpose. zo

is set to be zero for all the points on the xo–yo plane since
the plane is vertical to the zo axis and it passes through the
origin of {A}. B

AR is the transform matrix of Frame {A} rel-
ative to Frame {B}, and can be expressed as

B
AR ¼

t11 t12 t13

t21 t22 t23

t31 t32 t33

2
64

3
75. ð5Þ



Fig. 1. Reconstruction of the wavefield on a tilted xo–yo plane for a given wave distribution on the x–y plane (hologram plane).
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For example, if Frame {A} is obtained by rotating Frame
{B} about x 0-axis by an angle a, then rotating about y 0 by
an angle b, and then rotating about z by an angle c, the to-
tal transform matrix B

AR can be expressed as

B
AR ¼ Rz0 ðcÞRy0 ðbÞRx0 ðaÞ

¼
cos c � sin c 0

sin c cos c 0

0 0 1

2
64

3
75

cos b 0 sin b

0 1 0

� sin b 0 cos b

2
64

3
75

�
1 0 0

0 cos a � sin a

0 sin a cos a

2
64

3
75; ð6Þ

where RxiðhÞ represents the transfer matrix of a rotation
about an axis xi by an amount of h. The positive direc-
tions of the rotation angles around different axes are also
shown in Fig. 1. the distance r(x,y,z,xo,yo,zo) between
any point (x,y,z) on the hologram plane and a point
(xo,yo,zo) on the destination reconstruction plane can be
calculated as

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðzP þ z0Þ2 þ ðx� x0Þ2 þ ðy � y0Þ2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

P þ x02 þ y02 þ z02 � 2xx0 � 2yy 0 þ 2zP z0
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

P þ x2
o þ y2

o � 2xx0 � 2yy0 þ 2zP z0
q

;

ð7Þ
where we have substituted x 02 + y 02 + z 02 with x2

o þ y2
o,

which is obvious from Eq. (4) according to the property
of rotation matrix. The above square root can be expanded
as a power series of ro ¼ ðz2

P þ x2
o þ y2

oÞ
1=2. If only the first

two lower order terms in the expanded series are consid-
ered, then Eq. (7) can be expressed as

r � ro 1þ ðx
2 þ y2 � 2xx0 � 2yy 0 þ 2zP z0Þ

2r2
o

� �
; ð8Þ

which is substituted into the Rayleigh–Sommerfeld diffrac-
tion integral of Eq. (3). We also substitute x 0, y 0 and z 0 with
x and y from Eqs. (4) and (5), and finally we get
Eðn; g; zoÞ ¼
iE0

kro
exp ikro þ

ik
ro
ðt31xo þ t32yoÞzp

� �

�
Z Z

oðx; yÞ exp
ik

2zo
ðx2 þ y2Þ

� �

� exp½�i2pðnxþ gyÞ�dxdy; ð9Þ

with

n ¼ ðt11xo þ t12yoÞ
kro

; ð10Þ

g ¼ ðt21xo þ t22yoÞ
kro

. ð11Þ

Here we have introduced a further approximation, ik(x2 +
y2)/2ro � ik(x2 + y2)/2zo, which holds almost the same
restriction as the Fresnel condition. This approximation
is introduced to simplify the calculation of Eq. (9), so that
it can be implemented with the fast Fourier transform
(FFT) algorithm. And finally a coordinate transform is
made to get the wave distribution in the (xo,yo) coordinate
as indicated in Eqs. (10) and (11). In the discrete implemen-
tation of Eq. (9), we have the following relationship
according to the Shannon theory:

t11Dxo þ t12Dyo ¼
kro

NDx
; and t21Dxo þ t22Dyo ¼

kro

NDy
;

ð12Þ

where Dxo and Dyo are the resolutions of the tilted plane,
Dx and Dy are the resolutions of the hologram plane and
N · N is the array size of a square area on the CCD, thus
the resolution of the reconstructed plane can be analyti-
cally calculated from the given Dx and Dy.

It is interesting to note that if the rotation angles b and c
are both set to be zero in Eq. (6), Eq. (9) can be written as

Eðn; g; zoÞ ¼
iE0

kro
exp ik ro þ

zpyo sin a
ro

� �� �

�
Z Z

oðx; yÞ exp
ik

2ro
ðx2 þ y2Þ

� �

� exp �i2p
xo

kro
xþ yo cos a

kro
y

� �� �
dxdy; ð13Þ
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with the resolution of the reconstruction plane as

Dxo ¼
kz

NDx
and Dyo ¼

kz
NDy cos h

; ð14Þ

which is obvious from Eq. (12). In this case, the normal
direction of the reconstruction plane is located in the y–z

plane. This is exactly the case discussed in Ref. [9]. And fur-
thermore, if all the rotation angles a, b, and c are set to be
zero, Eq. (9) can be further simplified as the well-known
Fresnel diffraction formula [13], where all the reconstruc-
tion planes are perpendicular to the optical axis.
3. Experiments and discussion

In this section, experiments are performed to verify the
proposed algorithm for variable tomographic scanning.
The optical setup of the experiment is based on a Michelson
interferometer, as shown in Fig. 2. A coherent 699 ring dye
laser, with a continuously tunable wavelength from 567.0 to
613.0 nm, is used for illumination. The laser beam is split at
beam splitter BS into reference and object beams, and each
part is focused by lens L1 onto the focal point F1 or F2.
Point F2 is also the front focus of objective L2, so the object
is illuminated with a collimated beam. The plane S is
imaged to the CCD camera by the lens L2. In the reference
arm the beam is also collimated by lens L3, which results in
a magnified image at the CCD camera of an interference
pattern that would exist at S if the object wave is superposed
with a plane wave there. An aperture AP is placed in the
focal plane of L2 to control the size of the object angular
spectrum captured in the CCD camera. An off-axis holo-
gram arrangement is used by slightly tilting the reference
mirror REF. As we know for off-axis holography, the object
angular spectrum can be separated from other spectral com-
ponents of the hologram with a band-pass filter if the off-
axis angle of the two beams is properly adjusted. Then,
the pure object wave distribution o(x,y) on the hologram
plane can be readily extracted by taking an inverse Fourier
transform of the object spectrum [13].
Fig. 2. Optical apparatus used in the digital interference holography
experiments.
The WSDIH system is used to image a tilted 25 cent
coin, rotated from x 0–y 0 plane with a = �4�, b = 7.5� and
c = 0� in space, as shown in Fig. 1. The selected area on
the coin surface contains two letters ‘‘OR’’, and has a size
of 2.5 · 2.5 mm2 with 300 · 300 pixels. The coin can be
viewed as an object with two surfaces: the base surface of
the coin and the top surface of the letters. The reconstruc-
tion distance z, representing the distance from the object to
S plane in Fig. 2 is set to be 36 mm. The wavelengths of the
dye laser is scanned for a range of 580.0–590.0 nm at 20
values, which gives an axial range of 650 lm and axial res-
olution of 32 lm according to Section 2.1.

For comparison, the Fresnel diffraction formula is first
used to reconstruct the wave fields for scanning direction
normal to the hologram plane. Thus the reconstruction
xo–yo planes are all parallel to the hologram plane. The
wave distributions from all the holograms are numerically
superposed together to obtain the accumulated field distri-
bution that represents the three-dimensional object struc-
ture. Fig. 3(a) shows four contour images at different
layers of the object at about 60 lm axial distance intervals.
Since the coin is tilted relative to the hologram plane in
both directions, the contours are all tilted in the images,
and they sequentially appear from left top to right bottom
in Fig. 3(a) as the distance z is increased. Fig. 4(a) is the flat
view of all the yo–zo cross-sections from the reconstructed
volume and Fig. 4(b) is the xo–zo flat view. Since the coin
is tilted in both directions relative to xo- and yo-axes, so
it is not parallel to the scanning planes, and one can clearly
see the extended width (or thickness) of the flat views in
both figures. We have used the proposed algorithm of
Eqs. (9)–(11) for reconstruction but with a = 0, b = 0�
and c = 0�, and obtained the same results as above, prov-
ing the fact that the Fresnel diffraction formula is only a
special case of the proposed algorithm.

Using the known orientation of the coin in space, we can
set proper angles for scanning in the algorithm. If we choose
a = 0 and b = 7.5�, then the reconstruction plane is tilted in
space, and has a relative 4� angle to the coin surface around
the xo-axis. Fig. 3(b) shows another four contour images,
which now sequentially appear from top to bottom as the
distance z is increased. The yo–zo flat view in Fig. 4(c)
now shrinks to two relative thin lines, which represent the
two surfaces of the coin. This reflects the fact that the recon-
struction angle of b = 7.5� matches the orientation of the
coin in space. However, the xo–zo flat view in Fig. 4(d) of
the cross-sections is almost as thick as Fig. 4(b), since we
have selected the reconstruction angle a = 0 so that the
reconstruction plane still has a relative angle to the coin sur-
face around xo-axis.

Now we choose the scanning plane parallel to the base
surface of the coin, so that the features of the relief appear
simultaneously in a single tomographic scanning. Specifi-
cally, the rotation angles of the reconstruction plane are
set to be a = �4� and b = 7.5�, as shown in Fig. 1. The
reconstructed contour images are shown in Fig. 3(c), from
which we can see that the letters on the coin are now either



Fig. 3. Reconstruction of contour images of a quarter in a 2.5 · 2.5 · 0.65 mm3 volume with tilted angles: (a) a = 0�, b = 0�, c = 0�; (b) a = 0�, b = 7.5�,
c = 0� and (c) a = �4�, b = 7.5�, c = 0�.
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all highlighted or all darkened, for they are located in the
same scanning plane. Similarly, Fig. 4(e) shows the yo–zo

flat view of the reconstruction and Fig. 4(f) is the xo–zo flat
view. Clearly, both of the above two flat views shrink to
two thin lines since the scanning plane are now parallel
to the coin base surface and the reconstruction angles
match well with the actual orientation of the coin.

In the above we have used rotation angles a and b to
adjust the orientation of the scanning plane. Angle c can also
be used to rotate the reconstructed features. Fig. 5(a) shows
several contour images at about 60 lm axial distance inter-
vals with a = 0�, b = 7.5� and c = 30�; and Fig. 5(b) shows
the reconstruction results with a = �4�, b = 7.5� and
c = 160�.

The above experiments clearly demonstrate the effective-
ness of the proposed algorithm. The rotation angle c in the
algorithm can be any angle within 360�. The Fresnel approx-
imate conditions will impose a restriction to the extent of
the titled reconstruction plane, which is related to the tilted
angles a or b. In the case of Eq. (13), the reconstruction plane
is tilted only around x 0 axis, And according to numerical
analysis, we find that tilted angle a can be selected as large
as 60� and good reconstruction can still be achieved.

As in most of the 3D microscopy systems, the 3D volume
can be reconstructed as a set of scanning planes perpendic-
ular to the optical axis. If the lateral resolution is compara-
ble to the axial resolution, a tilted tomographic image can
be obtained by combining or interpolating points from dif-
ferent tomographic layers without too much sacrifice of the
image quality. However, if the lateral resolution does not
match well with the axial resolution, the quality of the inter-
polated image will be greatly degraded. For example, if the
lateral resolution is much better than the axial resolution,
each point on a tiled plane need to be interpolated from
points of two nearby tomographic layers, and these points
are separated with a relatively large axial distance compared
to its original lateral resolution, thus the interpolated point
on the tiled plane will lose its accuracy because of the poor
axial resolution of the system. As in WSDIH system, the
axial resolution is determined by the wavelength scanning
range of the dye laser system and is typically �10 lm
[7,8]. However, the lateral resolution can be much higher
(for example, �1 lm) if microscopic objectives with high
magnification are used in the optical system. Thus a direct
interpolation will cause significant degradation to the
images in this case.

The intention of using WSDIH for variable tomo-
graphic scanning in this paper is based on the advantage
of digital holography, that the holograms have recorded
all the information of the object. Thus it is possible to
directly calculate the more rigorous wavefield distributions
on a tilted plane from the recorded holograms. And the
numerical superposition of these more rigorous tilted fields
results in tilted tomographic images, which will thus have



Fig. 4. (a), (c) and (e) are flats views of the yo–zo cross-sections from Figs.
3(a)–(c), respectively; (b), (d) and (f) are xo–zo flats views from Figs. 3(a)–
(c), respectively.

Fig. 5. Contour images at about 60 lm axial distance intervals with (a)
a = 0�, b = 7.5�, c = 30� and (b) a = �4�, b = 7.5�, c = 160�.
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better quality than those only from interpolation, especially
when the lateral resolution does not match well with the
axial resolution. Thus the whole process can be fulfilled
without physically tilting the object and recording the holo-
grams again, which is a unique capability not available in
other tomographic imaging systems.

The current method introduces some approximate con-
ditions as well, and these approximations are mainly
introduced for the fast implementation of the algorithm.
In order to reconstruct the wavefield on tilted planes, it
is normally inevitable to introduce a coordinate transform,
either in the space domain [9,11,12] or in the spectrum
domain [14]. However, it is possible to introduce less or
no other approximations to the algorithm. The authors
are currently developing more rigorous algorithms for
tilted reconstructions, which will be reported in the near
future. For more discussions about the acquisition speed
and the sensitivity of the WSDIH system, readers can
refer to Ref. [9].

4. Conclusion

In conclusion, we have proposed an algorithm for vari-
able tomographic scanning based on the principle of wave-
length scanning digital holography. Object fields are
reconstructed in a number of selected tilted planes from a
series of holograms and the numerical superposition of
the tilted image volumes result in the variable tomographic
scanning. In the proposed algorithm, the reconstruction
angles can be selected as arbitrarily angles in space and
not limited in a two-dimensional plane. It will offer more
flexibility to observe randomly oriented structures and
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features of a specimen in a WSDIH system. Experimental
results are presented to demonstrate the effectiveness of
the method.
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